Low Loss Porous Core Photonic Crystal Fiber Design in THz Regime

Show simple item record

dc.contributor.author Islam, Md. Sohidul
dc.date.accessioned 2021-02-12T06:23:46Z
dc.date.available 2021-02-12T06:23:46Z
dc.date.issued 2020-11-15
dc.identifier.citation [1] S. Atakaramians, S. Afshar V., T.M. Monro, and Derek Abbott, "Terahertz dielectric waveguides", Advances in Optics and Photonics, vol. 5, pp. 169-215, 2013. [2] A. Mendez and T. Morse, Specialty Optical Fibers Handbook. 1st ed., Elsevier, 2007. [3] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium doped fiber amplifier operating at 1.54μm”, Electronics Letters, vol. 23, no. 19, pp. 1026–1028, 1987. [4] M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume V: Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optics, 3rd ed., 2009. [5] S. Atakaramians, "Terahertz Waveguide: A study of Microwires and Porous Fiber", Ph.D. dissertation, Dept. of Electrical and Electronic Engineering., Univ. of Adelaide, Adelaide, 2011. [6] Terahertz Sources (May 10, 2020). RP Photonics Encyclopaedia [online]. Available: https://www.rp-photonics.com/terahertz_sources.html [7] Charrada K, Zissis G and Aubes M, "Two-temperature,two-dimensional fluid modelling of mercury plasma in high-pressure lamps", J. Phys. D: Appl. Phys., vol. 29, pp.2432–8, 1996. [8] Shin Y M, Park G S, Scheitrum G P and Caryotakis G, "Circuit analysis of an extended interaction klystron." J. Korean Phys. Soc., vol. 44, pp. 1239–1245, 2004. [9] Bhattacharjee S., "Folded waveguide traveling-wave tube sources for terahertz radiation.", IEEE Trans. Plasma Sci., vol. 32, pp. 1002–1014, 2004. [10] B. A. Knyazev, G. N. Kulipanov and N. A. Novosibirsk, "terahertz free electron laser: instrumentation development and experimental achievements.", Meas. Sci. Technol., vol. 21, pp. 054017, 2010. 102 [11] L. A. Yang, Y. Hao, Q. Yao and J. Zhang, "Improved negative differential mobility model of GaN and AlGaN for a terahertz Gunn diode.", IEEE Trans. Electron Devices, vol. 58, pp. 1076–83, 2011. [12] W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, and M. S. Shur,"Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors." Appl. Phys. Lett., vol. 84, pp. 2331–2333, 2004. [13] H. Ubers, S. G. Pavlov and V. N. Shastin, "Terahertz lasers based on germanium and silicon." Semicond. Sci.Technol., vol. 20, pp. 211–21, 2005. [14] G. Dodel, “On the history of far-infrared (FIR) gas lasers: Thirty-five years of research and application Infrared.”, Phys. Technol., vol. 40, pp. 127–39, 1999. [15] S. Hoffmann and M. R. Hofmann, “Generation of Terahertz radiation with two colour semiconductor lasers”, Laser & Photon. Rev., vol. 44, 2007. [16] F. Sizov, "THz radiation sensors.", Opto-Electron. Rev., vol. 18, 2010. [17] H. J. Bakker, G. C. Cho, H. Kurz, Q. Wu, and X.C. Zhang, "Distortion of terahertz pulses in electro-optic sampling.", Journal of the Optical Society of America B, vol. 15, Issue 6, pp. 1795-1801, 1998. [18] Tingye Li,"Advances in Optical Fiber Communications: An Historical Perspective," IEEE Journal on Selected Areas in Communications, vol. 1, 1983. [19] R. P. Khare, Fiber Optics and Optoelectronic. Oxford University Press, 2nd ed., 2004. [20] G. Agrawal, Nonlinear Fiber Optics. 1st ed., Elsevier, 2013. [21] P. Russell, "Photonic-Crystal Fibers," Journal of Lightwave Technology, vol. 24, Issue 12, pp. 4729-4749, 2006. [22] Brief history of photonic crystal fibers J. C. Knight, “Photonic crystal fibers”, Nature, vol. 424, pp. 847–851, 2003. [23] T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, vol. 22, pp. 961–963, 1997. [24] M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Applied Physics Letters, vol. 49, pp. 13–15, 1986. 103 [25] S. Atakaramians, Shahraam Afshar V., Bernd M. Fischer, Derek Abbott, and Tanya M. Monro, "Porous fibers: a novel approach to low loss THz waveguides", Applied Optics, Vol. 16, pp. 8845-8854. 2008. [26] Laser and Fibers (June 23, 2020). NKT Photonics [online]. Available: https://www.nktphotonics.com/lasers-fibers/technology/photonic-crystal-fibers [27] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, land D. C. Allan, “Singlemode photonic band gap guidance of light in air”, Science, vol. 285, p. 1537–1539, 1999. [28] Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low Loss Broadband Transmission in Optimized Core-shape Kagome Hollow-core PCF,” in Conf. Lasers and Electro-Optics, San Jones, CA, 2010. [29] F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow core photonic crystal fiber,” Optics Letters, vol. 31, no. 24, pp. 3574–3576, 2006. [30] Md. Shariful Islam, Mohammad Faisal, S. M. Abdur Razzak, "Dispersion Flattened Porous-Core Honeycomb Lattice Terahertz Fiber for Ultra Low Loss Transmission", IEEE Journal of Quantum Electronics, vol. 53 , Issue: 6 , Dec. 2017. [31] J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Frontiers in Physics, vol. 3, p.p. 107-114, 2015. [32] P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, , and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micromachining,” Optics Express, vol. 23, p. 8498–8506, 2015. [33] K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Optics Express, vol. 11, no. 8, p. 843–851, 2003. [34] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Optics Letters, vol. 25, no. 18, pp. 1325–1327, 2000. 104 [35] R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett., vol. 24, pp. 1431–1433, 1999. [36] J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett., vol. 31, pp.308–310, 2006. [37] C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett., vol. 33, pp. 902–904, 2008. [38] C.H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. vol. 34, pp.3457–3459, 2009. [39] T.I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett., vol. 86, pp. 161904-16909, 2005. [40] M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express, vol. 13, pp. 10815–10822, 2005. [41] S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express, vol. 17, pp. 14053–14062, 2009. [42] Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics, vol. 2, pp. 618–621, 2008. [43] M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett., vol. 95, pp. 041112-18, 2009. [44] M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett., vol. 90, pp. 061111-17, 2007. [45] S. Atakaramians, S. Afshar V., H. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett., vol. 98, pp. 121104-11, 2011. 105 [46] G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B, vol. 17, pp. 851–863, 2000. [47] R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett., vol. 26, pp. 846–848, 2001. [48] K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature, vol. 432, pp. 376–379, 2004. [49] B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt.Lett., vol. 32, pp. 2945–2947, 2007. [50] A. Barh, R. K. Varshney, and B. P. Pal, “THz guidance through hollow-core plastic photonic bandgap fiber: Sensitivity to structural parameters,” Recent Adv. Photonics, WRAP 2015, pp. 1–4, 2015. [51] M. Azadeh, Fiber Optics Engineering, 1st ed., Springer, 2009. [52] MS Islam, S Rana, MR Islam, M Faisal, H Rahman, J Sultana, "Porous core photonic crystal fibre for ultra-low material loss in THz regime", IET Communications, vol. 10, pp. 2179-2183, 2016. [53] MS Islam, J Sultana, J Atai, D Abbott, S Rana, MR Islam "Ultra low-loss hybrid core porous fiber for broadband applications", Applied optics, vol. 56, pp. 1232- 1237, 2017. [54] R. P. Khare, Fiber Optics and Optoelectronic, 1st ed., Oxford University Press, 2004. [55] M. D. Nielsen, R. S. Jacob and K. P. Hansen, "Modal cut-off and the V – parameter in photonic crystal fibers," Optics Letters, vol. 28, pp. 1879-1881, 2003. [56] K. Thyagarajan and A. Ghatak, Fiber Optic Essentials, 3rd ed., New Jersey: John Wiley & Sons, 2007. [57] P. Kaiser and H.W. Astle, “Low loss single material fibers made from pure fused silica,” The Bell System Technical Journal, vol. 53, no. 6, p. 1021–1039, 1974. [58] K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electronics Letters, vol. 38, pp. 546–547, 2002. 106 [59] S. Bhandarkar, “Sol–gel processing for optical communication technology,” Journal of the American Ceramic Society, vol. 87, pp. 1180–1199, 2004. [60] K. Cook, G. Balle, J. Canning, L. Chartier, T. Athanaze, M. A. Hossain, C. Han, J.-E. Comatti, Y. Luo, and G.-D. Peng, “Step-index optical fiber drawn from 3D printed preforms,” Optics Letters, vol. 41, pp. 4554–4557, 2016. [61] M. J. Weber, Handbook of Optical Materials, 2nd ed., New York: CRC Press, 2003. [62] A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty fibers for terahertz generation and transmission: A review,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, pp. 365–379, 2016. [63] M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, “Enhanced two-photon biosensing with dual-core photonic crystal fibers,” Optics Letters, vol. 28, p. 1224–1226, 2003. [64] J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, "Characterization of a microstructured Zeonex terahertz fiber," Journal of the Optical Society of America B, vol. 28, pp. 1013-1018, 2011. [65] M. R. Islam, M. Arif Hossain, S. I. Ali, J. Sultana, and M. Saiful Islam, “Design and Characterization of an Ultra Low Loss, Dispersion-Flattened Slotted Photonic Crystal Fiber for Terahertz Application,” J. Opt. Commun., pp. 1–8, 2018. [66] N. Mahnot, S. Maheshwary, R. Mehra Overview, “Photonic crystal fiber overview,” International Journal of Scientific & Engineering Research, vol. 6, no. 2, pp. 45–53, 2015 [67] K. Singh, “Optical Fibre Communication : A review,” Imperial Journal of Interdisciplinary Research (IJIR), vol. 3, no. 8, pp. 285–288, 2017. [68] S. F. Kaijage, Z. Ouyang and X. Jin, "Porous-Core Photonic Crystal Fiber for Low Loss Terahertz Wave Guiding," IEEE Photonics Technol. Lett, vol. 25, no. 15, pp. 1454-1457, 2013. 107 [69] R. Islam, G. K. M. Hasanuzzaman, M. S. Habib, S. Rana, and M. A. G. Khan, “Low-loss rotated porous core hexagonal single-mode fiber in THz regime,” Opt. Fiber Technol., vol. 24, pp. 38–43, 2015. [70] S. F. U. Ahmed, S. Nayemuzzaman, M. Faisal, “Low Loss Porous-Core Photonic Crystal Fiber for Long-Haul Broadband THz Transmission,” in 9th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 2016. [71] M. S. Islam et al., “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol., vol. 34, pp. 6–11, 2017. [72] S. Rana, M. S. Islam, J. Sultana, K. S. Reza, M. A. Uddin, M. Faisal, M. R. Islam and R. Islam, "A Highly Birefringent Slotted-Core THz Fiber," in 9th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 2016. [73] S. Rana, A. S. Rakin, H. Subbaraman, R. Leonhardt, and D. Abbott, “Low Loss and Low Dispersion Fiber for Transmission Applications in the Terahertz Regime,” IEEE Photonics Technol. Lett., vol. 29, no. 10, pp. 830–833, 2017. [74] M. S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core honeycomb lattice terahertz fiber for ultra-low loss transmission,” IEEE J. Quantum Electron., vol. 53, no. 6, pp. 1–8, 2017. [75] R. Islam, M. Selim Habib, G. K. M. Hasanuzzaman, S. Rana, and M. Anwar Sadath, “Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance,” Opt. Lett., vol. 41, no. 3, p. 440, 2016. [76] M. Shamim Anower, and M. Rabiul Hasan, “Highly birefringent and low effective material loss microstructure fiber for THz wave guidance,” Opt. Commun., vol. 423, pp. 140–144, 2018. [77] S. Ali, N. Ahmed, S. Alwee, M. Islam, S. Rana, and T. Bhuiyan, “Effects of Triangular Core Rotation of a Hybrid Porous Core Terahertz Waveguide,” Int. J. Electron. Telecommun., vol. 63, no. 1, pp. 25–31, 2017. 108 [78] S. Ali et al., “Guiding properties of a hexagonal core porous fiber (HCPF) for terahertz wave propagation,” 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), 2016, Rajshahi-6204, Bangladesh. [79] A. Tandj, J. Yammine, G. Bouwmans, M. Dossou, A. Vianou, E. R. Andresen and L. Bigot, "Design and Fabrication of a Ring-Core Photonic Crystal Fiber for Low-Crosstalk Propagation of OAM Modes," in European Conference on Optical Communication (ECOC), September 2018. [80] J. Sultana et al., “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun., vol. 407, pp. 92–96, 2017. [81] M. R. Hasan and S. Akter, “Extremely low-loss hollow-core bandgap photonic crystal fibre for broadband terahertz wave guiding,” Electron. Lett., vol. 53, pp. 741–743, April 2017. [82] R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, M. A. Sadath and C. Markos, "A Novel Low Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission," IEEE Photonics Technology Letters, vol. 28, no. 14, p. 1537–1540, 2016. [83] R. Ding, S. Hou, D. Wang, J. Lei, X. Li, and Y. Ma, “Novel design of a diamondcore photonic crystal fiber for terahertz wave transmission,” Prog. Electromagn. Res. Symp.–Spring (PIERS), no. 1, pp. 1148–1151, 2017. [84] I. K. Yakasai, A. Rahman, P. E. Abas, and F. Begum, “Theoretical Assessment of a Porous Core Photonic Crystal Fiber for Terahertz Wave Propagation,” Opt. Commun., pp. 1–11, 2018. [85] A. Bala, K. R. Chowdhury, and M. Faisal, “A Novel Tube Lattice Slotted Core Highly Birefringent Photonic Crystal Fiber for THz Application,” Journal of Advanced Optics and Photonics, vol.1, No.2, 2018. [86] S. M. A. Razzak, Y. Namihira, "Guiding Properties of a Decagonal Photonic Crystal Fiber." Journal of Microwaves and Optoelectronics, vol. 6, 2007. [87] M. A. Motin, M. I. Hasan, M. Selim Habib, S.M. Abdur Razzak, and M. A. Goffar Khan,"Dispersion and Confinement Loss Control with Decagonal Photonic Crystal Fibers for Wideband Transmission Systems", ICIEVE, 2013. 109 [88] M. A. Islam, R. Ahmad, M. S. Ali, and K. M. Nasim, “Proposal for highly residual dispersion compensating defected core decagonal photonic crystal fiber over S+C+L+U wavelength bands”, Optical Engineering, vol. 53, pp. 076106, 2014. [89] M. N. Hoque, A. S. and N. Akter, "Octagonal Photonic Crystal Fibers: Application to Ultra-flattened Dispersion", Australian Journal of Basic and Applied Sciences, vol.4, 2274-2279, 2010. [90] R. A. Matej, S Dmytro, Z. Stanislav, "Modified Octagonal Photonic Crystal Fiber for Residual Dispersion Compensation over Telecommunication Bands", Rad.Eng. Jounl., vol. 27, 2018. [91] S. Chowdhury, S. Sen K. Ahmed, B. K. Paula, and S. Islama, "Porous shaped photonic crystal fiber with strong confinement field in sensing applications: Design and analysis", Sensing and Bio-Sensing Research, vol. 13, pp. 63-69, 2017. [92] S. Sen, M. S. Islam and B. K. Paul, "Ultra-low Loss with Single Mode Polymer- Based Photonic Crystal Fiber for THz Waveguide," Journal of Optical Communications, vol. 40, pp. 411-417 2017. [93] Azabi, Y. O., "Spiral photonic crystal fibers," Ph.D. dissertation, School of Mathematics, Dept. Computer Science & Engineering, Univ. of London, London, 2017. [94] M. N. Sadiku, Numerical Techniques in Electromagnetics. New York: CRC Press, 2 ed., 2001. [95] R.Garg, Analytical and Computational Methods in Electromagnetics, 3rd ed., Norwood:Artech House, 2008. [96] B. M. A. Rahman and A. Agrawal, Finite Element Modeling Methods for Photonics, 2nd ed., London: Artech House, 2013. [97] B. A. Rahman, F. A. Fernandez, and J. B. Davies, “Review of finite element methods for microwave and optical waveguides,” Proceedings of the IEEE,vol. 79, no. 10, pp. 1442–1448, 1991. 110 [98] S. Rana, G. K. M. Hasanuzzaman, M. S. Habib, S. F. Kaijage, R. Islam., "Proposal for a low loss porous core octagonal photonic crystal fiber for T-ray wave guiding", Optical Engineering, vol. 53, pp. 115107, 2014. [99] K. Ahmed et. al, "Design of a single-mode photonic crystal fibre with ultra-low material loss and large effective mode area in THz regime." IET Optoelectronics, vol. 11, pp. 265-271, 2017. [100] Z. Wu, Z. Shi, H. Xia, X. Zhou, Q. Deng, J. Huang, X. Jiang, and W. Wu, ”Design of highly birefringent and low-loss oligoporous-core THz Pho-tonic crystal fiber with single circular , air-hole unit,” IEEE Photonics Journal, vol. 8, pp. 4502711, 2016. [101] A.W. Snyder, J. Love, "Optical Waveguide Theory", Springer Science and Business Media, 1983. en_US
dc.identifier.uri http://hdl.handle.net/123456789/807
dc.description Supervised by Dr. Mohammad Rakibul Islam Professor, Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Boardbazar, Gazipur-1704. en_US
dc.description.abstract Photon, the massless particle responsible for electromagnetic radiations travels at the speed of light which is the key element in terahertz (THz) based fiber communications. The efficient transmission of THz wave using waveguides has been a major challenge since early days of this technology. Loss and dispersion play vital part in THz wave guidance. They should be reduced to obtain accurate THz wave propagation. Metallic waveguide tolerates Ohmic losses and dielectric waveguides experience huge material absorption losses. Dry air is the best transparent medium for THz radiations. Considering above losses, the fiber needs to develop. This thesis reports the development of fibers to guide THz radiations. The objective of this research work is to design optical waveguides using more advanced form optical fiber called porous core photonic crystal fiber (PCPCF) in the terahertz regime. The porous core fiber has an arrangement of subwavelength featured air-holes in the cross section. The designed PC-PCF would be a possible candidate for THz wave guidance. A considerable effort has been put into designing advanced porous core PCF structures with increased flexibility and the ability to minimize losses in terms of geometric structure. In this thesis, different structure is designed to obtain porous core photonic crystal fibers with low effective material loss (EML), low confinement loss (CL), high core power fraction and flatten dispersion for THz wave propagation. The preparation of proposed structure air holes, both in periodic cladding and porous core, made it possible to guide most of the light through low loss air, which is confirmed by numerical analysis of optical properties of the fiber while preserving the single mode condition. Numerical analysis of the proposed geometric structure of the fiber is rigorously performed using finite element method (FEM) with perfectly match layer (PML) boundary conditions to characterize the wave guiding properties. This thesis examines crucial design parameters such as effective material loss, core power fraction, birefringence, dispersion, and confinement loss of the proposed porous core fiber. Topas is used as background material due to its constant refractive index behavior in terahertz regime and its lower bulk absorption loss. In this thesis work, four PC-PCF structures have been proposed, designed and numerically investigated. The proposed PC-PCF contains different shape and size of air hole dimensions in the cross sections. Among all the proposed PC-PCFs, the circular XVI cladding and circular core PC-PCF structure exhibits comparatively better results. This circular PC-PCF shows 0.04 𝑐𝑚􀬿􀬵 and 1.96 × 10􀬿􀬸 𝑐𝑚􀬿􀬵 of EML and confinement loss respectively. So, the total loss is 0.04 𝑐𝑚􀬿􀬵 as the confinement loss is negligible. Also, at 84% porosity the proposed circular PC-PCF exhibits 55.8% of core power fraction which can be considered enough for THz wave propagation. The sol-gel fabrication technique offers more freedom to high porosity geometric structures. Therefore, sol-gel can be considered as the fabrication technique for this proposed circular PC-PCF. Finally, the results of the analysis are further compared with those of previous reported contributions and found comparative. The proposed designs can be taken into consideration for THz communications. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology,Board Bazar, Gazipur, Bangladesh en_US
dc.title Low Loss Porous Core Photonic Crystal Fiber Design in THz Regime en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics