Development of Improved Cancer Classification Method by Integrating Metadata in Microarray Data Analysis

Show simple item record

dc.contributor.author Habib, Md. Ahsan
dc.date.accessioned 2021-08-12T10:09:57Z
dc.date.available 2021-08-12T10:09:57Z
dc.date.issued 2012-09-30
dc.identifier.citation [1] Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C.,Kobayashi, M., Horton, H., Brown, E.L., 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680. [2] Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P.O., Davis, R.W., 1996. Parallel human genome analysis:microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93, 10614–10619. [3] Schena, M., Shalon, D., Davis, R.W., Brown, P.O., 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467– 470. [4] Nguyen, D.V., Arpat, A.B., Wang, N., Carroll, R.J., 2002. DNA microarray experiments: biological and technological aspects. Biometrics 58, 701–717. [5] Wolf, L., Shashua, A., et al. (2009). Selecting relevant genes with a spectral approach (No. CBCL Paper No.238). Cambridge, MA, USA: Massachusetts Institute of Technology. [6] Hall MA, Correlation based feature selection for machine learning,, UW of Hamilton, NewZealand, 2012 [7] HIoskuldsson, A., 1988. PLS regression methods. J. Chemometr. 2, 211–228. [8] Inza, I., Larranaga, P., et al. (2004). Filter versus wrapper gene selection approaches in DNA microarray domains. Artificial Intelligence, 31(2), 91-103. [9] Cooper, G.M. (2000). The Cell - A Molecular Approach, 2nd ed., Sinauer Associates Inc, Sunderland, Massachusetts [10] Griffiths, A.J.F., Gelbart, W.M., Miller, J.H., and Lewontin, R.C.. (1999). Modern Genetic Analysis, Freeman, New York. [11] Lehninger, A.L., Nelson, D.L., and Cox, M.M. (2000) Principles of Biochemistry, Worth Publishing, 3rd ed. [12] Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., Lewontin, R.C., and Gelbart, W.M. (2000). An Introduction for Genetic Analysis, Freeman, New York. Click here to buy ABBYY PDF Transformer 2.0 www.ABBYY.com Click here to buy ABBYY PDF Transformer 2.0 www.ABBYY.com 69 [13] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (2002). Molecular Biology of the Cell, Garland Publishing, 4th ed. [14] Dale, J.W. and von Schantz, M. (2002). From Genes to Genomes: Concepts and Applications of DNA Technology. John Wiley and Sons, Ltd, England. [15] Microarray data repositories available at http://www.ncbi.nlm.nih.gov/geo [16] Microarray data repositories available at http://smd.stanford.edu [17] Microarray data repositories available at http://www.ebi.ac.uk/arrayexpress [18] KEGG repository available at www.genome.jp/kegg/ [19] Draghici, S., Kulaeva, O., et al. (2003). Noise sampling method: an ANOVA approach allowing robust selection of differentially regulated genes measured by DNA microarrays. Bioinformatics, 19(11), 1348-1359. [20] Efron, B., Tibshirani, R., et al. (2001). Empirical Bayes Analysis of a Microarray Experiment. Journal of the American Statistical Association, 96, 1151-1160. [21] Lee, K. E., Sha, N., et al. (2003). Gene selection: a Bayesian variable selection approach. Bioinformatics, 19(1), 90-97. [22] Tibshirani, R. J. (2006). A simple method for assessing sample sizes in microarray experiments. BMC Bioinformatics, 7(106). [23] Ambroise, C., & McLachlan, G. J. (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. PNAS, 99(10), 6562-6566. [24] Devijver, P. A., & Kittler, J. (1982). Pattern recognition: a statistical approach. London: Prentice-Hall Inc. [25] Golub T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, (286):531–537, 1999. [26] Yang YH, Nucleic Acids Res 3, e15, 2012 [27] Bolsted BM et al, Bioinformatics Quartiles, 2009 [28] Dudoit, S., Fridlyand, J., et al. (2000). Comparison of discrimination methods for the classification of tumors using gene expression data: UC Berkeley. [29] Affymetrix probe standard and expression measurement available at www.affymetrix.com/support/technical/manuals.affx, 1999 [30] Affymetrix probe standard and expression measurement available at www.affymetrix.com/support/technical/manuals.affx, 2001 Click h en_US
dc.identifier.uri http://hdl.handle.net/123456789/823
dc.description Prof. Dr. M. A. Mottalib, Department of Computer Science and Engineering (CSE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract Microarray experiments provide a high throughput to measure expressions of thousands of genes simultaneously. A systematic and computational analysis of this vast amount of data provides understanding and insight into many aspects of biological processes like Single Nucleotide Polymorphism (SNP), genetic disorders, cancer identification. Expression analysis of DNA (Deoxyribonucleic Acid) of microarray experiments is far from straightforward from statistical point of view. Dimensionality problem of microarray data, identifying significant and informative genes or DNA sequences are the prime challenges for cancer classification. Therefore, the aim of the thesis in cancer classification is to integrate metadata for optimal subset of genes that are useful for expert and embedded system design for different types of cancer classification. In this thesis, different filtering and classification algorithms will be compared on different set of data to conclude which will be efficient and effective method for cancer classification from microarray data. For the improvement of cancer classification performance and biological validation of optimal subset of genes, metadata ranking will be evaluated and integrated for cancer classification. The method will achieve better performance based on gene-independent covariance, trustworthy gene feature ranking and metadata ranking factors. The performance of the proposed method will be evaluated by different filtering to overcome the dimensionality problem, minimum number of genes used in classification techniques on publicly available benchmark dataset of ALL, brain, breast, kidney, lung, prostate for intracancer and inter-cancer classification. en_US
dc.language.iso en en_US
dc.publisher Department of Computer Science and Engineering (CSE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Development of Improved Cancer Classification Method by Integrating Metadata in Microarray Data Analysis en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics