Design and Characterization of an AlxGa1-xAs/GaxIn1-xAsyP1-y Multijunction Solar Cell

Show simple item record

dc.contributor.author Shams, Abdullah Bin
dc.contributor.author Nafis, Shadman
dc.contributor.author Ali, Mohammad Zawad
dc.date.accessioned 2021-09-07T04:53:37Z
dc.date.available 2021-09-07T04:53:37Z
dc.date.issued 2013-11-15
dc.identifier.citation 1. Zehner, Ozzie (2012). Green Illusions. Lincoln and London: University of Nebraska Press. pp. 1–169, 331–42. 2. Perlin, John (2004). "The Silicon Solar Cell Turns 50". National Renewable Energy Laboratory. Retrieved 5 October 2010. 3. Chetan Singh Solanki. Renewable Energy Technologies. Prentice Hall India. 4. S.Sivanaguruji; M.Balasubba Reddy, D.Srilatha. Generation and Utilization of Electrical Energy, Pearson 5. Chetan Singh Solanki. Renewable Energy Technologies. Prentice Hall India. 6. SolidWorks Plays Key Role in Cambridge Eco Race Effort. cambridgenetwork.co.uk (4 February 2009). 7. "The ODOT Solar Highway". Oregon Dept. of Transportation. Retrieved 22 April 2011. 8. Semiconductor Physics And Devices, Donald A. Neamen. 9. Lenardic, Denis. Large-scale photovoltaic power plants ranking 1 – 50PVresources.com. 10. Ariel, Yotam (25 August 2011) Delivering Solar to a Distribution-cursed Market. Renewableenergyworld.com. Retrieved on 3 June 2012. 11. "Solar on cheap", physics.ucsc.edu. Retrieved 2011-06-30. 12. John R. Balfour. Introduction to Photovoltaics. Jones & Bartlett Learning. 13. AMPS-1D User Manual. 14. AMPS-1D User Manual. 15. Streetman, Ben G.; Sanjay Banerjee. Solid State electronic Devices (6th ed.).New Jersey: Prentice Hall. 16. M. Wolf, Proc. IRE 48, 1246 (I 960). 17. Semiconductor Physics And Devices, Donald A. Neamen. 18. Chetan Singh Solanki. Renewable Energy Technologies. Prentice Hall India. 19. F. Dimroth, 3-6 junction photovoltaic cells for space and terrestrial applications, Photovoltaic Specialists Conference, 2005. 20. Chetan Singh Solanki, Solar Photovoltaics : Fundamentals, Technologies and Applications. 40 21. Nikhil Jain, Design of iii-v Multijunction Solar Cells on Silicon Substrate . 22. Yamaguchi, M; Takamoto, T; Araki, K (2006). "Super high-efficiency multi-junction and concentrator solar cells". Solar Energy Materials and Solar Cells 90 (18–19): 3068.doi:10.1016/j.solmat.2006.06.028. 23. Low resistance tunnel junctions for high efficiency tandem solar cells, EP 2135290 A2 24. GaAs, AlAs, and AlxGa1−xAs Material parameters for use in research and device applications, Sadao Adachi, J. Appl. Phys. 58, R1 (1985); doi: 10.1063/1.336070. 25. A.T. Gorelenok, A.G. Dzigasov, P.P. Moskvin, V.S. Sorokin, I.S. Tarasov, Sov. Phys.Semicond., 15, no.12, pp.1400-1402 (1981). 26. Theoretical analysis of solar cells based on graded bandgap structures, By: G. Sassi Citation: J. Appl. Phys. 54, 5421 (1983); doi: 10.1063/1.332723. 27. M. Wolf, Proc. IRE 48, 1246 (I 960). 28. B. Ellis and T.S. Moss, Solid-State Electron. 13,1 (1970). 29. K. Zweibel, Basic photovoltaic principles and methods, New York: Van Nostrand Reinhold, 1984. 30. B. Burnett, The basic physics and design of III-V multijunction solar cells, 2002. 31. G. P. Smestad, Optoelectronics of solar cells,Bellingham, WA: SPIE Press, 2002. 32. Luque, A., Martı´, A., Stanley, C., Lo´pez, N., Cuadra, L., Zhou, D., & Mc Kee, A. (2004). General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence. J. Appl. Phys., 96(03), 903-909. 33. J.E. Sutherland, and J.R. Hauser, “Optimum bandgap of several III–V heterojunction solar cells”, Solid-State Electronics, vol. 22, no. 1, pp. 3-5, 1979. 34. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of Silicon solar cells”, IEEE Transactions on Electron Devices, vol. ED-31, pp. 711-716, 1984. 35. L.W. James, “III-V Compound heterojunction solar cells”, in Proceedings of IEEE International Electron Devices Meeting, vol. 21, pp. 87-90, Washington, USA, 1975. 36. J. M. Román, State-of-the-art of III-V solar cell fabrication technologies, device designs and applications, Advanced Photovoltaic Cell Design, 2004. 41 37. Material parameters of InGaAsP and related binariesS Adachi - Journal of Applied Physics, 1982][ GaAs, AlAs, and AlxGa1-xAs Material parameters for use in research and device applications. 38. GaAs, AlAs, and AlxGa1−xAs Material parameters for use in research and device applications, Sadao Adachi, J. Appl. Phys. 58, R1 (1985); doi: 10.1063/1.336070. 39. Goldberg Yu.A. and N.M. Schmidt Handbook Series on Semiconductor Parameters, vol.2, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, 1999, pp. 153-179. 40. Goldberg Yu.A. Handbook Series on Semiconductor Parameters, vol.2, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, 1999, pp. 1-36. 41. T.P.Pearsall, GaInAsP Alloy Semiconductors, John Wiley and Sons, 1982. 42. K.Tappura, J. Appl. Phys., 74, no. 7, pp.4565-4570 (1993). 43. A.K.Saxena, Phys. Rev., B24, no.6, pp. 3295-3302 (1981). 44. M.Shur, Physics of Semiconductor Devices, Prentice Hall, 1990. 45. W.C.Liu, J. Material Sci., 25, no.3, pp.1765-1772 (1990). 46. Luque, Antonio; Hegedus, eds. (2003). Handbook of Photovoltaic Science and Engineering. John Wiley and Sons. ISBN 0-471-49196-9. 47. Computer modeling study of the effects of inhomogeneous doping and/or composition in GaAs solarcell devices H. C. Hamaker, J. Appl. Phys. 58, 2344 (1985); doi: 10.1063/1.335957. 48. Tunnel-Junction-Limited Multijunction Solar Cell Performance Over Concentration; doi: 10.1109/JSTQE.2013.2258140. 49. J. A. Hutchby and R. L. Fudrich "Theoreti cal anal ysi s of AlxGa1-xAs/GaAs graded band gap solar cell " J. Appl . Phys. 47, pp.3140-3151 1976. en_US
dc.identifier.uri http://hdl.handle.net/123456789/843
dc.description Supervised by Dr. Md. Ashraful Hoque, Professor Department of EEE Islamic University of Technology (IUT) en_US
dc.description.abstract Unlike general solar cell modeling with AlGaAs in this work AlxGa1-xAs/GaxIn1-xAsyP1-y Multijunction Solar Cell was designed with Ge substrate. Several parameters were then calculated using AMPS-1D and wxAMPS simulation software i.e. Efficiency, Fill Factor, Open circuit voltage (Voc) and Short circuit current density (Jsc) to characterize this solar cell model. It was also shown that a higher bandgap difference between the n and p type materials of the tunnel junction produced a higher efficiency for this design and finally the tunnel junction was optimized. As an extension of this design from two junctions to three and four Junctions, appropriate designs were also proposed using GaAsSb and GaInAs. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Design and Characterization of an AlxGa1-xAs/GaxIn1-xAsyP1-y Multijunction Solar Cell en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics