dc.identifier.citation |
1. Zehner, Ozzie (2012). Green Illusions. Lincoln and London: University of Nebraska Press. pp. 1–169, 331–42. 2. Perlin, John (2004). "The Silicon Solar Cell Turns 50". National Renewable Energy Laboratory. Retrieved 5 October 2010. 3. Chetan Singh Solanki. Renewable Energy Technologies. Prentice Hall India. 4. S.Sivanaguruji; M.Balasubba Reddy, D.Srilatha. Generation and Utilization of Electrical Energy, Pearson 5. Chetan Singh Solanki. Renewable Energy Technologies. Prentice Hall India. 6. SolidWorks Plays Key Role in Cambridge Eco Race Effort. cambridgenetwork.co.uk (4 February 2009). 7. "The ODOT Solar Highway". Oregon Dept. of Transportation. Retrieved 22 April 2011. 8. Semiconductor Physics And Devices, Donald A. Neamen. 9. Lenardic, Denis. Large-scale photovoltaic power plants ranking 1 – 50PVresources.com. 10. Ariel, Yotam (25 August 2011) Delivering Solar to a Distribution-cursed Market. Renewableenergyworld.com. Retrieved on 3 June 2012. 11. "Solar on cheap", physics.ucsc.edu. Retrieved 2011-06-30. 12. John R. Balfour. Introduction to Photovoltaics. Jones & Bartlett Learning. 13. AMPS-1D User Manual. 14. AMPS-1D User Manual. 15. Streetman, Ben G.; Sanjay Banerjee. Solid State electronic Devices (6th ed.).New Jersey: Prentice Hall. 16. M. Wolf, Proc. IRE 48, 1246 (I 960). 17. Semiconductor Physics And Devices, Donald A. Neamen. 18. Chetan Singh Solanki. Renewable Energy Technologies. Prentice Hall India. 19. F. Dimroth, 3-6 junction photovoltaic cells for space and terrestrial applications, Photovoltaic Specialists Conference, 2005. 20. Chetan Singh Solanki, Solar Photovoltaics : Fundamentals, Technologies and Applications. 40 21. Nikhil Jain, Design of iii-v Multijunction Solar Cells on Silicon Substrate . 22. Yamaguchi, M; Takamoto, T; Araki, K (2006). "Super high-efficiency multi-junction and concentrator solar cells". Solar Energy Materials and Solar Cells 90 (18–19): 3068.doi:10.1016/j.solmat.2006.06.028. 23. Low resistance tunnel junctions for high efficiency tandem solar cells, EP 2135290 A2 24. GaAs, AlAs, and AlxGa1−xAs Material parameters for use in research and device applications, Sadao Adachi, J. Appl. Phys. 58, R1 (1985); doi: 10.1063/1.336070. 25. A.T. Gorelenok, A.G. Dzigasov, P.P. Moskvin, V.S. Sorokin, I.S. Tarasov, Sov. Phys.Semicond., 15, no.12, pp.1400-1402 (1981). 26. Theoretical analysis of solar cells based on graded bandgap structures, By: G. Sassi Citation: J. Appl. Phys. 54, 5421 (1983); doi: 10.1063/1.332723. 27. M. Wolf, Proc. IRE 48, 1246 (I 960). 28. B. Ellis and T.S. Moss, Solid-State Electron. 13,1 (1970). 29. K. Zweibel, Basic photovoltaic principles and methods, New York: Van Nostrand Reinhold, 1984. 30. B. Burnett, The basic physics and design of III-V multijunction solar cells, 2002. 31. G. P. Smestad, Optoelectronics of solar cells,Bellingham, WA: SPIE Press, 2002. 32. Luque, A., Martı´, A., Stanley, C., Lo´pez, N., Cuadra, L., Zhou, D., & Mc Kee, A. (2004). General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence. J. Appl. Phys., 96(03), 903-909. 33. J.E. Sutherland, and J.R. Hauser, “Optimum bandgap of several III–V heterojunction solar cells”, Solid-State Electronics, vol. 22, no. 1, pp. 3-5, 1979. 34. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of Silicon solar cells”, IEEE Transactions on Electron Devices, vol. ED-31, pp. 711-716, 1984. 35. L.W. James, “III-V Compound heterojunction solar cells”, in Proceedings of IEEE International Electron Devices Meeting, vol. 21, pp. 87-90, Washington, USA, 1975. 36. J. M. Román, State-of-the-art of III-V solar cell fabrication technologies, device designs and applications, Advanced Photovoltaic Cell Design, 2004. 41 37. Material parameters of InGaAsP and related binariesS Adachi - Journal of Applied Physics, 1982][ GaAs, AlAs, and AlxGa1-xAs Material parameters for use in research and device applications. 38. GaAs, AlAs, and AlxGa1−xAs Material parameters for use in research and device applications, Sadao Adachi, J. Appl. Phys. 58, R1 (1985); doi: 10.1063/1.336070. 39. Goldberg Yu.A. and N.M. Schmidt Handbook Series on Semiconductor Parameters, vol.2, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, 1999, pp. 153-179. 40. Goldberg Yu.A. Handbook Series on Semiconductor Parameters, vol.2, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, 1999, pp. 1-36. 41. T.P.Pearsall, GaInAsP Alloy Semiconductors, John Wiley and Sons, 1982. 42. K.Tappura, J. Appl. Phys., 74, no. 7, pp.4565-4570 (1993). 43. A.K.Saxena, Phys. Rev., B24, no.6, pp. 3295-3302 (1981). 44. M.Shur, Physics of Semiconductor Devices, Prentice Hall, 1990. 45. W.C.Liu, J. Material Sci., 25, no.3, pp.1765-1772 (1990). 46. Luque, Antonio; Hegedus, eds. (2003). Handbook of Photovoltaic Science and Engineering. John Wiley and Sons. ISBN 0-471-49196-9. 47. Computer modeling study of the effects of inhomogeneous doping and/or composition in GaAs solarcell devices H. C. Hamaker, J. Appl. Phys. 58, 2344 (1985); doi: 10.1063/1.335957. 48. Tunnel-Junction-Limited Multijunction Solar Cell Performance Over Concentration; doi: 10.1109/JSTQE.2013.2258140. 49. J. A. Hutchby and R. L. Fudrich "Theoreti cal anal ysi s of AlxGa1-xAs/GaAs graded band gap solar cell " J. Appl . Phys. 47, pp.3140-3151 1976. |
en_US |