Research trend and potential application of spin based device

Show simple item record

dc.contributor.author Hasan, Mehedi
dc.contributor.author Ahmed, Shomi
dc.contributor.author Jahan, M. A. Aziz
dc.date.accessioned 2021-09-07T09:10:29Z
dc.date.available 2021-09-07T09:10:29Z
dc.date.issued 2013-11-15
dc.identifier.citation [1] http://boomeria.org/physicslectures/secondsemester/quantum/quantumenue.html [2] http://www.computerworld.com/s/article/9230150/IBM_claims_spintronics_memory_breakthrough?pageNumber=1 [3] Masaaki Tanaka and Satoshi Sugahara “MOS-Based Spin Devices for Reconfigurable Logic,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 5, MAY 2007 961 [4] Monsma D J, Lodder J C, Popma Th J A and Dieny B 1995 Phys. Rev. Lett.74 5260 [5] Monsma D J, Vlutters R and Lodder J C 1998 Science 281 407 [6] Anil Kumar P S, Jansen R, van ’t ErveOMJ,Vlutters R,de Haan P and Lodder J C 2000J. Magn. Magn. Mater. 214 L1 [7] Jansen R, Anil Kumar P S, van ’t ErveOMJ,Vlutters R, de Haan P and Lodder J C 2000Phys. Rev. Lett.85 3277 [8] Sze S M 1981Physics of Semiconductor Devices 2nd edn (New York: Wiley) [9] K. Araki, K. Sato, and H. Katayama-Yoshida, “A study of transition-metal-doped group-IV magnetic semiconductors by first principle computations,” in Proc. Abstracts 63rd Autumn Meeting Jpn. Soc. Appl. Phys., Niigata, 2002. 26p-ZA-3 [10] N. Manyala, Y. Sidis, J. F. Ditusa, G. Aeppli, D. P. Young, and Z. Fisk,“Large anomalous Hall effect in a silicon-based magnetic semiconductor,” Nat. Mater., vol. 3, no. 4, pp. 255–262, Apr. 2004 [11] T. Lepselter and S. M. Sze, “SB-IGFET: An insulated-gate field-effect transistor using Schottky barrier contacts for source and drain,” Proc.IEEE, vol. 56, no. 8, pp. 1400–1402, Aug. 1968. [12] R. Hattori and J. Shirafuji, “Numerical simulation of tunnel effect transis-tors employing internal field emission of Schottky barrier junction,”Jpn. J. Appl. Phys., vol. 33, no. 1B, pp. 612–618, Jan. 1994 [13] X. Han, M. Oogane, H. Kubota, Y. Ando, and T. Miyazaki, “Fabrication of high-magnetoresistance tunnel junctions using Co75Fe25 ferromagnetic electrodes,”Appl. Phys. Lett., vol. 77, no. 2, pp. 283–285, Jul. 2000. [14] D. Wang, C. Nordman, J. M. Daughton, Z. Qian, and J. Fink, “70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers,”IEEE Trans. Magn., vol. 40, no. 4, pp. 2269–2271, Jul. 2004. [15] J. Herfort, H.-P. Schonherr, and K. H. Ploog, “Epitaxial growth of Fe3Si/GaAs(001) hybrid structures,”Appl. Phys. Lett., vol. 83, no. 19, pp. 3912–3914, Nov. 2003 [16] A. Kawaharazuka, M. Ramsteiner, J. Herfort, H.-P. Schoenherr, H. Kostial, and K. H. Ploog, “Spin injection from Fe3Si into GaAs,”Appl. Phys. Lett., vol. 85, no. 16, pp. 3492–3494, Oct. 2004. [17] K. Sugiura, R. Nakane, S. Sugahara, and M. Tanaka, “Schottky barrier height of ferromagnet/Si(001) junctions,”Appl. Phys. Lett., vol. 89, no. 7, pp. 072 110/1–072 110/3, Aug. 2006. [18] M. Shirai, “Electronic and magnetic properties of 3d transition-metal-doped GaAs,”Physica E, vol. 10, no. 1, pp. 143–147, May 2001. [19] S. Sugahara and M. Tanaka, “A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain,” Appl. Phys. Lett., vol. 84, no. 13, pp. 2307–2309, Mar. 2004. [20] K. Araki, K. Sato, and H. Katayama-Yoshida, “A study of transition-metal-doped group-IV magnetic semiconductors by first principle compu-tations,” in Proc. Abstracts 63rd Autumn Meeting Jpn. Soc. Appl. Phys., Niigata, 2002. 26p-ZA-3. [21] S. Takagi, “Subband structure engineering for realizing scaled CMOS with high performance and low power consumption,”IEICE Trans. Electron., vol. E85-C, no. 5, pp. 1064–1072, May 2002. [22] S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriya, and S. Takagi, “Char-acterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique,”Appl. Phys. Lett., vol. 83, no. 17, pp. 3516– 3518, Oct. 2003 [23] S. Sugahara and M. Tanaka, “A spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) with a ferromagnetic semiconductor for the channel,” J. Appl. Phys., vol. 97, no. 10, pp. 10D503/1–10D503/3, May 2005 [24] N. Lebedeva and P. Kuivalainen, “Modeling of ferromagnetic semicon-ductor devices for spintronics,”J. Appl. Phys., vol. 93, no. 12, pp. 9845–9864, Jun. 2003 [25] T. Shibata and T. Ohmi, “Neuron MOS binary-logic integrated circuits. Design fundamentals and soft-hardware-logic circuit implementation,”IEEE Trans. Electron Devices, vol. 40, no. 3, pp. 570–576, Mar. 1993. [26] C. L. Lee and C. W. Jen, “Bit-sliced median filter design based on majority gate,”Proc. Inst. Electr. Eng.—G, vol. 139, no. 1, pp. 63–71, Feb. 1992 [27] S. Das Sarma, Am. Sci. 89 (2001) 516-5 [28] Moser, A. et al.Magnetic recording: advancing into the future. J. Phys. D 35,R157–R167 (2002) [29] C. Chappert, A. Fert, F. Nguyen Van Dau, Nature Materials, vol. 6, 813 (2007). [30] Grünberg, P. Magnetic field sensor with ferromagnetic thin layers having magnetically antiparallel polarized components.US patent 4,949,039 (1990). 70 [31] Dieny, B. et al.Magnetoresistive sensor based on the spin valve effect. US patent 5,206,590 (1993). [32] Dieny, B. et al.Giant magnetoresistance in soft ferromagnetic multilayers. Phys. Rev. B 43,1297–1300 (1991) [33] Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74,3273–3276 (1995). [34] Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139,L231-L234 (1995) [35] Parkin, S. S. P. et al.Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3,862–867 (2004). [36] Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3,868–871 (2004). [37] A. D. Smith and Y. Huai, “STT-RAM—A new spin on universalmemory,”Future Fab Int., vol. 23, pp. 28–32, Jul. 2007. [38] S. Tehrani, J. M. Slaughter, M. Deherrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,”Proc. IEEE, vol. 91, no. 5, pp. 703–714, May 2003. [39] J. C. Slonczewski, J. Magn. Magn. Mater., 1996, 159, L1-L7. [40] L. Berger, Phys. Rev. B, 1996, 54, 9353-9358. [41] W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russekand T. J. Silva, Phys. Rev. Lett., 2004, 92, 027201 [42] S. E. Russek, W. H. Rippard, T. Cecil and R. Heindl, Chapter 38, Handbook of Nanophysics: Functional Nanomaterial [M], CRC PrlLic, 2010. [43] G. E. Moore, BProgress in digital integrated electronics,[ in IEEE Tech. Dig. Int. Electron Devices Meeting, Washington, DC, Dec. 1–3, 1975, pp. 11–13. [44] G. E. Moore, BProgress in digital integrated electronics, Copyright 1975 IEEE. Reprinted with permission. Technical Digest. International Electron Devices Meeting, IEEE, 1975, pp. 11 13,[ IEEE Solid-State Circuits Soc. News, vol. 11, no. 3, pp. 36–37, Sep. 2006. [45] R. R. Schaller, BMoore’s law: Past, present and future,[ IEEE Spectrum, vol. 34, no. 6, pp. 52–59, Jun. 1997. [46] International Technology Roadmap for Semiconductors (ITRS), 2009 Edition, Semiconductor Industry Association, Austin, TX. [Online]. Available: http://public.itrs.net [47] T. D. Clak, R. J. Prance, and A. D. C. Grassie, BFeasibility of hybrid Josephson field effect transistors,[ J. Appl. Phys., vol. 51, no. 5, pp. 2736–2743, May 1980. [48] T. Nishino, M. Miyake, Y. Harada, and U. Kawabe, BThree-terminal superconducting device using a Si single-crystal film,[ IEEE Electron Device Lett., vol. 6, no. 6, pp. 297–299, Jun. 1985. [49] T. Baba, BProposal for surface tunnel transistors,[ Jpn. J. Appl. Phys., vol. 31, no. 4B, pp. L455–L457, Apr. 1992. [50] K. Inomata, N. Ikeda, N. Tezuka, R. Goto, S. Sugimoto, M. Wojcik, and E. Jedryka, BHighly spin-polarized materials and devices for spintronics,[ Sci. Technol. Adv. Mater., vol. 9, no. 1, pp. 014101/1–014101/19, Mar. 2008. [51] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, BFundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor,[ Phys. Rev. B, vol. 62, no. 8, pp. R4790–R4793, Aug. 2000. [52] R. J. Elliot, BTheory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors,[ Phys. Rev., vol. 96, no. 2, pp. 266–279, Oct. 1954. [53] Y. Yafet, Bg factors and spin-lattice relaxation of conduction electrons,[ in Solid State Physics, vol. 14, F. Seitz and D. Turnbull, Eds. New York: Academic Press, 1963. [54] M. I. D’yakonov and V. I. Perel’, BSpin relaxation of conduction electrons in noncentrosymetric semiconductors,[ Fiz. Tverd. Tela., vol. 13, pp. 3581–3585, 1971. [55] G. L. Bir, A. G. Aronov, and G. E. Pikus, BSpin relaxation of electrons due to scattering by holes,[ Zh. Eksp. Teor. Fiz., vol. 69, pp. 1382–1397, 1975. [56] Freitas, P.P., Ferreira, H.A., Graham, D.L., Clarke, L.A., Amaral, M.D., Martins, V., Fonseca, L., and Cabral, J.S.: ‘Magnetoresitive DNA chips’, in Johnson, M. (Eds.).: ‘Magnetoelectronics’ (Elsevier, Oxford, 2004), Chap. 7 [57] Wang, Z.L.: ‘Nanostructures of ZnO’, Materials Today, 2004, 6, p. 26 en_US
dc.identifier.uri http://hdl.handle.net/123456789/853
dc.description Supervised by Prof. Dr. Md. Shahid Ullah Head of the Department Department of Electrical and Electronic Engineering Islamic University of Technology (IUT) Gazipur-1704, Bangladesh. en_US
dc.description.abstract This thesis is focused on the new technology evolved in the electronics field based on the spin property of electron that is Spintronics, at the interface between magnetism and electronics, which is a new field of research in considerable expansion. The basic concept of Spintronics is the manipulation of spin currents, in contrast to mainstream electronics in which the spin of the electron is ignored. Adding the spin degree of freedom provides new effects, new capabilities and new functionalities. The article describes the development of Spintronics from the first studies of spin dependent transport in ferromagnetic materials to the discovery of the giant magnetoresistance and to the most recent advances. Everybody has already a spintronic device on their desktop, since the read heads of the hard disc drives of today use the giant magnetoresistance (GMR) phenomenon to read the magnetic information on the disc. The GMR was the first step on the road of the utilization of the spin degree of freedom in magnetic nanostructures and triggered the development of an active field of research which has been called Spintronics. Today this field is extending considerably, with very promising new axes like the phenomena of spin transfer, Spintronics with semiconductors, molecular Spintronics or single-electron Spintronics etc. In this review article we have tried to give an overall idea about the fundamentals of Spintronics, emergence of Spintronics in the field of data storage, Spintronics in the field of semiconductor and various Spintronic devices, their applications and future of Spintronics. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Research trend and potential application of spin based device en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics