dc.identifier.citation |
[1] A. M. N a ar, J.-M. Boutin, S. M. Lipkin, C. Y. Victor, J. M. Holloway, C. K. Glass, and M. G. Rosenfeld, \The orientation and spacing of core dna-binding motifs dictate selective transcriptional responses to three nuclear receptors," Cell, vol. 65, no. 7, pp. 1267{1279, 1991. [2] C. B. Akg ul, D. L. Rubin, S. Napel, C. F. Beaulieu, H. Greenspan, and B. Acar, \Content-based image retrieval in radiology: current status and future directions," Journal of Digital Imaging, vol. 24, no. 2, pp. 208{222, 2011. [3] J. Wood, T. Andersson, A. Bachem, C. Best, F. Genova, D. R. Lopez, W. Los, M. Marinucci, L. Romary, H. Van de Sompel, et al., \Riding the wave: How europe can gain from the rising tide of scienti c data," European Union, 2010. [4] S. Rajasekaran, S. Balla, C.-H. Huang, V. Thapar, M. R. Gryk, M. W. Maciejewski, and M. R. Schiller, \Exact algorithms for motif search.," in APBC, pp. 239{248, 2005. [5] S. Pal and S. Rajasekaran, \Improved algorithms for nding edit distance based motifs," in Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on, pp. 537{542, IEEE, 2015. [6] H. M. Martinez, \An e cient method for nding repeats in molecular sequences," Nucleic acids research, vol. 11, no. 13, pp. 4629{4634, 1983. [7] M. Nicolae and S. Rajasekaran, \E cient sequential and parallel algorithms for planted motif search," BMC bioinformatics, vol. 15, no. 1, p. 1, 2014. [8] A. Price, S. Ramabhadran, and P. A. Pevzner, \Finding subtle motifs by branching from sample strings," Bioinformatics, vol. 19, no. suppl 2, pp. ii149{ii155, 2003. [9] S. Rajasekaran and H. Dinh, \A speedup technique for (l, d)-motif nding algorithms," BMC research notes, vol. 4, no. 1, p. 1, 2011. [10] P. A. Pevzner, S.-H. Sze, et al., \Combinatorial approaches to nding subtle signals in dna sequences.," in ISMB, vol. 8, pp. 269{278, 2000. [11] N. Pisanti, A. M. Carvalho, L. Marsan, and M.-F. Sagot, \Risotto: Fast extraction of motifs with mismatches," in Latin American Symposium on Theoretical Informatics, pp. 757{768, Springer, 2006. [12] F. Y. Chin and H. C. Leung, \Voting algorithms for discovering long motifs.," in APBC, pp. 261{271, 2005. 34 [13] J. Davila, S. Balla, and S. Rajasekaran, \Pampa: An improved branch and bound algorithm for planted (l, d) motif search," in Tech. rep, Citeseer, 2007. [14] J. Davila, S. Balla, and S. Rajasekaran, \Fast and practical algorithms for planted (l, d) motif search," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 4, no. 4, pp. 544{552, 2007. [15] H. Dinh, S. Rajasekaran, and V. K. Kundeti, \Pms5: an e cient exact algorithm for the (, d)-motif nding problem," BMC bioinformatics, vol. 12, no. 1, p. 410, 2011. [16] S. Bandyopadhyay, S. Sahni, and S. Rajasekaran, \Pms6: A fast algorithm for motif discovery," International Journal of Bioinformatics Research and Applica- tions 2, vol. 10, no. 4-5, pp. 369{383, 2014. [17] H. Dinh, S. Rajasekaran, and J. Davila, \Qpms7: a fast algorithm for nding (, d)-motifs in dna and protein sequences," PloS one, vol. 7, no. 7, p. e41425, 2012. [18] M. Nicolae and S. Rajasekaran, \qpms9: An e cient algorithm for quorum planted motif search," Scienti c reports, vol. 5, 2015. [19] U. Keich and P. A. Pevzner, \Finding motifs in the twilight zone," in Proceedings of the sixth annual international conference on Computational biology, pp. 195{ 204, ACM, 2002. [20] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, J. C. Wootton, et al., \Detecting subtle sequence signals: a gibbs sampling strategy for multiple alignment," SCIENCE-NEW YORK THEN WASHINGTON-, vol. 262, pp. 208{208, 1993. [21] T. L. Bailey, C. Elkan, et al., \Fitting a mixture model by expectation maximization to discover motifs in bipolymers," 1994. [22] J. Buhler and M. Tompa, \Finding motifs using random projections," Journal of computational biology, vol. 9, no. 2, pp. 225{242, 2002. [23] T. Wang and G. D. Stormo, \Combining phylogenetic data with co-regulated genes to identify regulatory motifs," Bioinformatics, vol. 19, no. 18, pp. 2369{ 2380, 2003. [24] T. L. Bailey and C. Elkan, \The value of prior knowledge in discovering motifs with meme.," in Ismb, vol. 3, pp. 21{29, 1995. [25] E. Eskin and P. A. Pevzner, \Finding composite regulatory patterns in dna sequences," Bioinformatics, vol. 18, no. suppl 1, pp. S354{S363, 2002. [26] S. Sinha, M. Blanchette, and M. Tompa, \Phyme: a probabilistic algorithm for nding motifs in sets of orthologous sequences," BMC bioinformatics, vol. 5, no. 1, p. 1, 2004. 35 [27] P. Beaudoin, S. Coros, M. van de Panne, and P. Poulin, \Motion-motif graphs," in Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Com- puter Animation, pp. 117{126, Eurographics Association, 2008. [28] R. Gorda^n, L. Narlikar, and A. J. Hartemink, \Finding regulatory dna motifs using alignment-free evolutionary conservation information," Nucleic Acids Research, vol. 38, no. 6, pp. e90{e90, 2010. [29] T. L. Bailey, M. Bod en, T. Whitington, and P. Machanick, \The value of positionspeci c priors in motif discovery using meme," BMC bioinformatics, vol. 11, no. 1, p. 1, 2010. [30] M. Galib, N. Hasan, M. A. Rahman, and M. A. Mottalib, \Rpb-dc: Motif discovery using randomly projected bucketing (rpb) and discriminative conservation (dc) based prior," icita.org, vol. 15, 2015. [31] M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. De Moor, E. Eskin, A. V. Favorov, M. C. Frith, Y. Fu, W. J. Kent, et al., \Assessing computational tools for the discovery of transcription factor binding sites," Nature biotechnology, vol. 23, no. 1, pp. 137{144, 2005. [32] R. Siddharthan, E. D. Siggia, and E. Van Nimwegen, \Phylogibbs: a gibbs sampling motif nder that incorporates phylogeny," PLoS Comput Biol, vol. 1, no. 7, p. e67, 2005. [33] M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E. S. Lander, \Sequencing and comparison of yeast species to identify genes and regulatory elements," Nature, vol. 423, no. 6937, pp. 241{254, 2003. [34] K. D. MacIsaac, T. Wang, D. B. Gordon, D. K. Gi ord, G. D. Stormo, and E. Fraenkel, \An improved map of conserved regulatory sites for saccharomyces cerevisiae," BMC bioinformatics, vol. 7, no. 1, p. 1, 2006 |
en_US |